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Transition from Gaussian-orthogonal to Gaussian-unitary ensemble in a microwave billiard
with threefold symmetry
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Recently it has been shown that time-reversal invariant systems with discrete symmetries may display, in
certain irreducible subspaces, spectral statistics corresponding to the Gaussian-unitary ensemble~GUE! rather
than to the expected orthogonal one~GOE!. A Kramers-type degeneracy is predicted in such situations. We
present results for a microwave billiard with a threefold rotational symmetry and with the option to display or
break a reflection symmetry. This allows us to observe the change from GOE to GUE statistics for one subset
of levels. Since it was not possible to separate the three subspectra reliably, the number variances for the
superimposed spectra were studied. The experimental results are compared with a theoretical and numerical
study considering the effects of level splitting and level loss.
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I. INTRODUCTION

It is generally accepted that the eigenvalues of syste
whose classical counterparts are fully chaotic, behave s
larly to those of random matrix ensembles@1,2#. This con-
jecture also has some theoretical foundations@3–5#. If we
disregard spin, there are two random matrix ensembles,
two different behaviors under time reversal. Systems w
time-reversal invariance~TRI! are described by an ensemb
of real symmetric matrices, corresponding to the invaria
of the Hamiltonian under complex conjugation. This e
semble is known as the Gaussian-orthogonal ensem
~GOE! and should be contrasted with the ensemble of
Hermitian matrices, known as the Gaussian-unitary E
semble~GUE!, which usually applies when TRI is broken.

An additional issue arises if discrete symmetries
present. In this case, it has been assumed that eigenv
belonging to different irreducible representations of the sy
metry group are statistically independent and obey GOE
GUE spectral statistics, depending on whether TRI holds
not. These assumptions have received considerable su
both from theoretical considerations and from numeri
simulations. However, in recent papers@6,7#, it was sug-
gested that an anomalous situation arises when a t
reversal invariant system has a discrete symmetry, such
TRI is broken within one of the irreducible subspaces of
point group. This is equivalent to the fact that the symme
group has non-self-conjugate representations. In this c
TRI induces a degeneracy between different~conjugate! ir-
reducible representations of the symmetry group~Kramers
degeneracy!. It was suggested that the eigenvalues belong
to these degenerate subspaces should have the stat
properties of the GUE rather than the GOE. This might
expected from the fact that complex conjugation actua
maps one irreducible representation onto the other, ra
than leaving it invariant. In this sense, one may indeed ar
that TRI is violated within the subspace belonging to eith
1063-651X/2002/66~1!/016202~6!/$20.00 66 0162
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representation, and is only restored through the combi
presence of both representations. A more complete argum
is presented in Ref.@7#. A semiclassical view of this questio
is given in Ref.@8#. At this point we should add a note o
caution. This entire argument applies to the largest symm
group of the system, and relies on the fact that this grou
known. Deviations from the expectations would indicate t
presence of a larger unknown symmetry group. On the o
hand, symmetry breaking, which is usually present in exp
ment, will also affect the results. In the present paper we w
address both points in a simplest example.

Let us now consider a system with threefold symme
but with no twofold symmetry axis, i.e.,C3 symmetry. This
means that the wave functions in polar coordinates can
put in the form

cn,s~r ,f!5 (
k52`

`

fk,n~r !ei (3k1s)f, ~1!

wheren runs over all the integers ands takes the values 0
and 61. Because of TRI, it is clear that the eigenvalu
corresponding tocn,1 andcn,21 are degenerate, and we e
pect them to show GUE statistics. If in addition there is
twofold symmetry axis leading toC3v symmetry, the two
conjugate representations combine to a two-dimensiona
reducible representation that is self-conjugate. Thus we
pect GOE statistics as well as degeneracy.

There is one previous microwave experiment on a billia
with C3 symmetry performed by the Richter group@9#. In the
data analysis the authors faced the problem to separate
subspectra belonging to different irreducible representatio
Since it is impossible to realize aC3 symmetry exactly in
experiment, the doubly degenerate eigenvalues belongin
thes561 representations are split into doublets. In Ref.@9#
this doublet splitting was used as a tool to separate the
spectra by classifying each pair of eigenvalues with a d
tance smaller than some given threshold value as a split d
©2002 The American Physical Society02-1
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blet. The technique worked quite well, but there was
misidentification of about 5% of the levels. Nevertheless,
authors were able to see the GOE and GUE signatures in
respective subspectra. To improve the agreement with
dom matrix predictions, the authors calculated the spect
numerically and used the results of the calculation to rela
the misidentified eigenvalues.

In the present work a billiard with threefold symmetry
studied, which has the additional feature to allow a chang
symmetry fromC3v to C3 by turning an insert placed in th
center of the billiard, thus allowing to study the transitio
from GOE to GUE behavior of thes561 subspectra. In
view of the problems to separate the respective subspe
satisfactorily, we refrained from any attempt in this directio
Instead we concentrated on the spectral statistics for the
perimposed spectrum and compared the results with num
cal and analytic calculations based on random matrix the
~RMT!.

A formula for the number variance is derived assum
that the degeneracy is lifted by a random off-diagonal ma
element between the two states of the doublets. It descr
fairly well the long-range properties of the spectra comple
by means of level dynamics. The spectral short-range be
ior is sensitive to the details of the completion proced
while the long-range behavior is not. This is why the diffe
ence between the GUE and the GOE case can still be
tected very reliably in the long-range regime.

If we consider the individual spectra there is a loss
roughly 20% of the levels. The number variance of the u
completed spectra were compared with numerical R
simulations. Several ways to simulate the loss of levels h
been applied, and in all cases the two symmetries rema
distinguishable at a loss rate of 20%.

In the following section the experimental setup and
details of the data analysis are presented. Further the gra
transition from theC3v to theC3 symmetry will be observed
in the number variance of the experimental spectra. In S
III the results for the completed spectra will be compar
with calculations taking into account the break of theC3
symmetry. Finally, in Sec. IV we will discuss the results f
individual spectra with missing levels; these will be comp
mented with numerical RMT simulations.

II. EXPERIMENTAL TECHNIQUE

The main features of the experimental technique h
been presented elsewhere@10#. Therefore, we concentrate o
the aspects of relevance in the present context. Figur
shows a sketch of the billiard used in the experiment. T
interior insert can be rotated versus the outer part thus all
ing a spectral level dynamics measurement in dependenc
the rotation anglef. To avoid a break of symmetry due t
the presence of the antenna, three antennas were plac
symmetry equivalent positions, two of them being term
nated by 50V loads. Spectra were taken for angles fromf
50°, corresponding to the geometry withC3v symmetry
shown in the figure, tof520° in steps of 1°. All bound-
aries, both of the insert and the outer part, were curved,
the corners of the outer boundary were removed to av
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families of marginally stable orbits such as bouncing ba
This was checked by means of a Poincare´ plot of the classi-
cal motion of a particle in the billiard.

The height of the billiard wash510 mm, i.e., the system
was quasi-two-dimensional for frequencies belownmax
5c/2h515 GHz. Microwave reflection spectra were tak
with a Wiltron 360B vector network analyzer in the fre
quency range 0.5–7 GHz with a resolution of 0.5 MHz.
the studied spectral range one expects to find altogether
eigenvalues for each anglef. This number is obtained from
the Weyl formula with area and circumference term

n̄~k!5
A

4p
k22

S

4p
k. ~2!

n̄(k) is the mean integrated density of states, whereA
'0.258 m2 and S'3.59 m are the area and circumferen
of the billiard, andk52pn/c is the wave number. The cur
vature of the billiard yields a correction term of the order
1. The number of states identified for a fixed angle fa
approximately 20% short of the Weyl estimate. It is possi
to recover all missing eigenvalues by studying the dynam
of the spectra as a function of the angle. This is demonstra
in Fig. 2 where the positions of the missing resonances
marked by diamond-shaped symbols.

We begin with a presentation of the number variance
dependence of the insert angle, both for the completed
uncompleted spectra. In both cases the spectra were unfo
to a constant mean density of states using a second-o
polynomial fit to the experimental integrated density
states. The number varianceS2(L) has been obtained b
moving the interval of lengthL through each spectrum on
fine grid to not loose any information. Consequently, t
smoothness ofS2(L) does not reflect its statistical quality
since the intervals are not statistically independent.

Figure 3 shows the number varianceS2(L) for different
angles f, where the results forf50°,1°,f52°,3°,f
54°,5° and f56°,7° have been averaged. We see
gradual transition from theC3v to theC3 case with increas-
ing f. The line with long dashes shows an average ovef
58°, . . . ,19°, corresponding to theC3 case. The GOE-
GUE transition is clearly seen, both in the completed and

FIG. 1. Sketch of the microwave billiard used in the experime
at angle f50°. The positions of the antennas are marked
crosses.
2-2
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uncompleted spectra. In the following we will only discu
the two extreme cases, where for theC3v case the results fo
f50°,1° will be averaged and for theC3 case the ones fo
f58°, . . . ,19°.

III. RESULTS FOR THE COMPLETED SPECTRA AND
THE DOUBLET SPLITTING

We recall that forf50° we expect a superposition of on
GOE spectrum and another doubly degenerate GOE s
trum for the ideal system, whereas for anglesf sufficiently
different from zero a superposition of one GOE spectr

FIG. 2. Part of the spectral level dynamics for the billiard w
threefold symmetry with the orientation anglef of the central in-
sert as the level dynamics parameter. Anglef50° corresponds to
C3v symmetry. Only the resonances marked by cross-shaped
bols were really found in the experiment. At the positions mark
by diamond-shaped symbols missing resonances were su
mented.

FIG. 3. Number varianceS2(L) for different anglesf for the
completed~a! and the uncompleted~b! spectra. The results forf
50°,1° ~upper solid line!, f52°,3° ~dashed!, f54°,5° ~dash-
dotted!, f56°,7° ~dotted!, were averaged. The lower solid lin
shows an average overf58°, . . . ,19°.
01620
c-

with a doubly degenerate GUE spectrum should be obser
The short-range behavior is dominated by doublet splitti
which we have no reliable experimental handle on. We the
fore concentrate on the long-range behavior. In particular
consider the long-range part of the two-point correlati
function. The number variance is ideally suited for this p
pose because of the clear signature it shows for the dif
ence between the GOE and the GUE case.

For the superposition ofM strictly noninteracting, equally
weighted subspectra the number variance can be written

S total
2 ~L !5 (

m51

M

Sm
2 S 1

M
L D .

In the case of a threefold symmetry, the three subspectra
not independent; instead two of them are degenerate and
the covariance of this doublet spectrum leads to a factor
the number variance of their superposition,

S total
2 ~L !5S1

2S 1

3
L D14S2

2S 1

3
L D . ~3!

HereS1
2 is the number variance of the singlet spectrum be

a GOE spectrum in both cases, whereasS2
2 is the number

variance of the doublet spectrum that may be a GOE o
GUE spectrum, depending on the symmetry of the syste

In the analysis of the completed spectra, the first 70
genvalues of each spectrum have been omitted to avoid
generic features in the statistics. The results for the num
variance of the experimental spectra have been avera
over the rotation anglesf50,1° in the C3v case andf
58, . . .,19° in theC3 case. This implies that the statistic
fluctuations of the number variance are much larger in
former case.

Figure 4 shows experimental data with solid lines for t
C3v ~a! and theC3 ~b! case, respectively, while the dotte
lines give the ideal result of Eq.~3!. It is not surprising that
the agreement is poor, since we already noticed in the le
dynamics that the doublet spectrum was rather strongly s
indicating a sizeable break of theC3 symmetry of the bil-
liard. On the other hand, we clearly see that the two num
variances differ, and that the effect is quite large. This w
the motivation for further theoretical considerations of t
symmetry breaking. A detailed discussion of this issue f
lows in the Appendix, where an expression for the cor
sponding number variance is derived. Here only the m
points shall be outlined.

The case of theC3 symmetry is the more delicate one
The basis functions spanning the irreducible subspaces
complex, but due to the degeneracy we can always cho
real functions. The Appendix gives formal explanations, b
here it may suffice to say that the actual measurements ar
real fields and therefore it is clear that the smallest pertur
tion that does lift the degeneracy must cause real linear c
binations. Therefore it is not surprising that we have to u
degenerate perturbation theory for a real symmetric mat
Furthermore it is quite clear that the perturbation matrix
ements should be Gaussian distributed. While the mechan
imperfections causing the breakdown of the symmetry

m-
d
le-
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the same for all functions, the unperturbed eigenfuncti
involved are those of a chaotic system and thus in g
approximation random functions that should yield Gauss
distributed matrix elements. Based on these simple cons
ations it is clear that the level splitting is Gaussian distr
uted, too, and linear in the perturbation. In the Appendix
obtain an expression for the effect of such a level splitting
the long-range part of the number variance, and we a
show that effects of three level terms are small and t
effects of the symmetry breaking on the number variance
larger distances are of second order in the perturbation.

This result is of central importance since it explains w
the difference in the number variances persists in spite of
fairly large doublet splitting. A parameterD50.125 for the
width of the distribution of the perturbation matrix eleme
and thus for the doublet splitting@see Eq.~A5!#, is consistent
with the splitting found in the experiment. It corresponds t
mean level splitting of about 0.85 in units of the mean le
spacing. If we now use the results of the Appendix for t
number variance, Eq.~A10!, both for the GOE and the GUE
case, we find good agreement with the experimental res
as can be inferred from the dash-dotted line in Fig. 4. T
small deviations are consistent with the statistical uncert
ties seen in skewness and excess~not shown!. We therefore
have a clear understanding of the role played by the split
of the degeneracy and why it does not affect the differe
between the two cases even if the symmetries are only
proximate.

IV. MISSING LEVELS AND INDIVIDUAL SPECTRA

Completing the spectra by means of spectral level dyn
ics we were able to come to a quantitative theoretical und

FIG. 4. Number varianceS2(L) of the completed spectra for th
mirror-symmetric~a! and the non-mirror-symmetric~b! case. The
experimental results~solid line! are compared with the theoretica
prediction for the ideal system~dotted line!, and with an analytical
result, where the doublet splitting was taken into account~dash-
dotted line!.
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standing of the GOE-GUE transition observed in the exp
ment. The completion of spectra is definitely a legitima
approach, but in general only isolated spectra for fixed s
tems are available. Therefore we felt the need to check
robustness of the signatures of the transition by conside
what we can learn from incomplete spectra with as many
20% of the levels missing.

Numerical simulations have been performed as follow
We produced ensembles of 1000 spectra of dimension 50
create the GOE or the GUE doublets for theC3v andC3 case
respectively. Then we lifted the degeneracy randomly usin
Gaussian distribution with a width of about 12.5% of th
average level distance of a single spectrum. These spe
have been superposed with an independent GOE spectru
the same strength.

In the next step we tried to simulate the experimental lo
There are two sources of missing levels. First, close pairs
no longer be resolved if their separation is smaller than
linewidth. Second, a level will be missed if incidentally
node line of the associated wave function will be just at
position of the antenna. This mechanism leads to a loss
is uniformly distributed along the energy axis.

So we skipped randomly 7% of the eigenvalues to sim
late the global loss due to the position of the antenna. T
we compared the distance between two adjacent levels w
Gaussian distributed random number whose width is cho
such that around 13% of the doublets are destroyed. F
these spectra only 30% of the levels at the center of e
spectrum are taken into account for the further analysis
order to avoid edge effects. The ratio of uncorrelated a
correlated loss has been chosen to get a fair correspond
between experiment and theory forS2 at small distances and
is consistent with values found in previous works~see, e.g.,
Ref. @11#!.

The numerical as well as the experimental results for
nearest neighbor distribution for the case ofC3 symmetry are
presented in Fig. 5. A good qualitative agreement betw
the two curves is found, although the first bins are under
timated in the numerical data resulting in an overshoot of
maximum. In Fig. 6 the experimental results for the numb
variance of both symmetries are compared with the num
ics. In both cases we get a rough agreement up toL53. For
larger distances the slope of the numerical curve is by far

FIG. 5. Nearest-neighbor distribution for the case ofC3 symme-
try. The black line shows the results for the experimental data w
20% loss, the gray line shows the numerical simulations.
2-4
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large which indicates that we have somehow destroyed lo
range correlations still present in the experimental data.
the other hand, the reliability of the experimental data
largeL is questionable because of the missing levels. The
fore it seems unreasonable to fit parameters such as the
centages of the two sources of level missing. In any ca
both the experimental results as well as the numerical ca
lations permit a clear distinction between the two symme
cases.

V. CONCLUSIONS

We have presented experimental results for a quasi-t
dimensional microwave cavity with a movable insert perm
ting to change the discrete symmetry of the cavity fromC3v
to C3. According to theory, this change should modify t
spectral statistics in the ideal case from a superposition
two GOE spectra, one of them degenerate, to a superpos
of a GOE spectrum with a degenerate GUE spectrum.
find that the level splitting due to imperfections in theC3
symmetry amounts to about 0.85 of the mean level spac
and we face up to 20% loss of levels in an isolated spectr
From spectral level dynamics by rotating the cavity’s ins
we can recover the entire spectra, with some errors in
short-range behavior of correlation functions. Neverthele
the long-range part of the number variance still clearly d
plays the difference between the two cases. From a theo
ical analysis of the symmetry breaking in terms of degen
ate perturbation theory, this behavior becom
comprehensible, since the level splitting is linear in the p
turbation while long-range effects are quadratic.

Even more importantly, we have shown that the spec
statistics of spectra with large loss of levels can still prov
usable information. By postulating two types of losses
statistical one due to the fact that the antenna may be clos
a node of the wave function and a systematic one due
overlap of close-lying levels, we can explain the experim
tal results qualitatively.
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APPENDIX: NUMBER VARIANCE FOR PERTURBED C3

SYMMETRY

In this Appendix we present a detailed treatment of
effect of symmetry breaking. We first need to specify a re
sonable RMT model for this system. To this end let us co
sider an unperturbed Hamiltonian matrixH0 representing the
billiard with perfectC3 symmetry. The Hilbert space can b
separated into three irreducible parts, one invariant under
group action, the other two spanned by clockwise and co
terclockwise traveling waves. Because of TRI the eigenfu
tions in the latter two subspaces have pairwise degene
eigenvalues, i.e., they display a Kramers degeneracy. If
wish to display TRI rather than theC3 invariance we can
alternatively use a real basis for the doublet space. Any
turbation due to imperfections of the billiard can only bre
the C3 symmetry but not TRI. As we wish to introduce a
RMT model for the perturbation that conserves TRI, it
obvious that this can be implemented by a real symme
matrix in the real basis.

From this picture the effect of the perturbation is imm
diately clear: Since we have degenerate eigenvalues,
must look at these separately. Then we may ask what h
pens if there is a third eigenvalue in the vicinity. We ther
fore consider the matrix

A5S 0 V1 V2

V1 0 V3

V2 V3 1
D , ~A1!

where we have scaled and shifted the two degenerate ei
values to zero, and the perturbing third eigenvalue to o
The eigenvaluesl i obey the relations

l11l21l351,

l1
21l2

21l3
25112~V1

21V2
21V3

2!, ~A2!

l1l2l352V1
212V1V2V3 .

These equations are satisfied to second order in theVi by

l15V1 ,

l252V1 , ~A3!

l351.

The shift in the two degenerate eigenvalues, being linea
the off-diagonal elementV1, thus dominates all other pertur
bations as long as theVi are small with respect to the thir
eigenvalue. If on the other hand the third eigenvalue is
close to the degenerate doublet that theVi are of the order of
one, the situation becomes more complex and Cardan’s
2-5
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mula must be used. However, the splitting will still be line
in the Vi , so that the qualitative behavior should not
greatly affected. The probability for one doublet to com
close to another one is very small, since they experie
GUE level repulsion.

We now turn to the calculation of the spectral form fact
and of the number variance for a weakly split GUE doub
spectrum. Let us take theek to be an arbitrary referenc
spectrum with mean level spacing equal to one. The s
doublet spectrum is generated by

Ek,s52ek1sak , ~A4!

where s runs over61 and the factor 2 retains the mea
level spacing of one. Theak are taken to be independe
Gaussian random variables distributed according to

p~a!5A 1

2pD
exp@2a2/~2D!#. ~A5!

We are now going to compute the form factor

k~ t !5
1

2N (
s,s8561

(
k,l 51

N

e2p i (Ek,s2El ,s8)t ~A6!

from the corresponding quantityk0(t) for theek . Separating
the right-hand side into a part fork5 l and another forkÞ l
and averaging over theak yields
to

et

r,

01620
e

,
t

lit

k~ t !511e28p2Dt222e24p2Dt212k0~2t !e24p2Dt2.
~A7!

The number varianceS2(L) can be expressed as~see, e.g.,
Ref. @12#!

S2~L !5
2

p2E0

`

dtk~ t !S sinpLt

t D 2

. ~A8!

Thus, from Eq.~A8! we get theSd
2(L) for the doublet part of

the spectrum by inserting the GUE form factor

k0~ t !5utu ~ utu<1!

51 ~ utu.1! ~A9!

into Eq. ~A7!. From this one finally obtains for the numbe
variance of the superimposed spectrum

S total
2 ~L !5Sd

2S 2

3
L D1S1

2S 1

3
L D , ~A10!

where S1
2(L) is the number variance of the GOE singl

spectrum.
The C3v case yields a similar result if we substitute th

GOE form factor rather than the GUE form factor fork0 in
Eq. ~A7!.
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