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Recently it has been shown that time-reversal invariant systems with discrete symmetries may display, in
certain irreducible subspaces, spectral statistics corresponding to the Gaussian-unitary ei@ehiather
than to the expected orthogonal of@OE). A Kramers-type degeneracy is predicted in such situations. We
present results for a microwave billiard with a threefold rotational symmetry and with the option to display or
break a reflection symmetry. This allows us to observe the change from GOE to GUE statistics for one subset
of levels. Since it was not possible to separate the three subspectra reliably, the number variances for the
superimposed spectra were studied. The experimental results are compared with a theoretical and numerical
study considering the effects of level splitting and level loss.
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[. INTRODUCTION representation, and is only restored through the combined
presence of both representations. A more complete argument
It is generally accepted that the eigenvalues of systemss presented in Ref7]. A semiclassical view of this question
whose classical counterparts are fully chaotic, behave simis given in Ref.[8]. At this point we should add a note of
larly to those of random matrix ensemblgls2]. This con- ~ caution. This entire argument applies to the largest symmetry
jecture also has some theoretical foundatif®ss]. If we ~ group of the system, and relies on the fact that this group is
disregard spin, there are two random matrix ensembles, witknown. Deviations from the expectations would indicate the
two different behaviors under time reversal. Systems witPresence of a larger unknown symmetry group. On the other
time-reversal invariancéTRI) are described by an ensemble Nand, symmetry breaking, which is usually present in experi-
of real symmetric matrices, corresponding to the invariancdn€nt will also af_fect Fhe re_sults. In the present paper we wil
of the Hamiltonian under complex conjugation. This en_address both points in a simplest exgmple.
semble is known as the Gaussian-orthogonal ensemble Let us now consider a system with threefold symmetry

! ut with no twofold symmetry axis, i.eC3 symmetry. This
(GOE? 'and ShO.UId be contrasted with the gnsemple of aImeans that the wavg functigns in pola? cgordina%/es can be
Hermitian matrices, known as the Gaussian-unitary En- "~

. . ) put in the form
semble(GUE), which usually applies when TRI is broken.
An additional issue arises if discrete symmetries are w

presen.t. In thl_s case,_ it has.been assumeq that eigenvalues o o1, ) = 2 ¢k’n(r)e.(3k+u)¢’ 1)
belonging to different irreducible representations of the sym- k=
metry group are statistically independent and obey GOE or
GUE spectral statistics, depending on whether TRI holds owheren runs over all the integers ane takes the values 0
not. These assumptions have received considerable suppaid = 1. Because of TRI, it is clear that the eigenvalues
both from theoretical considerations and from numericalcorresponding taf, ; and ¢, _; are degenerate, and we ex-
simulations. However, in recent papd®,7], it was sug- pect them to show GUE statistics. If in addition there is a
gested that an anomalous situation arises when a timdwofold symmetry axis leading t@€;, symmetry, the two
reversal invariant system has a discrete symmetry, such thapnjugate representations combine to a two-dimensional ir-
TRI is broken within one of the irreducible subspaces of thereducible representation that is self-conjugate. Thus we ex-
point group. This is equivalent to the fact that the symmetrypect GOE statistics as well as degeneracy.
group has non-self-conjugate representations. In this case, There is one previous microwave experiment on a billiard
TRI induces a degeneracy between differ@mnjugate ir-  with C3 symmetry performed by the Richter grofgd. In the
reducible representations of the symmetry gr¢pamers data analysis the authors faced the problem to separate the
degeneracdy It was suggested that the eigenvalues belongingubspectra belonging to different irreducible representations.
to these degenerate subspaces should have the statisti&ihce it is impossible to realize @; symmetry exactly in
properties of the GUE rather than the GOE. This might beexperiment, the doubly degenerate eigenvalues belonging to
expected from the fact that complex conjugation actuallythe o=+ 1 representations are split into doublets. In Ref.
maps one irreducible representation onto the other, rathéhis doublet splitting was used as a tool to separate the sub-
than leaving it invariant. In this sense, one may indeed arguspectra by classifying each pair of eigenvalues with a dis-
that TRI is violated within the subspace belonging to eithertance smaller than some given threshold value as a split dou-
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blet. The technique worked quite well, but there was a
misidentification of about 5% of the levels. Nevertheless, the
authors were able to see the GOE and GUE signatures in the
respective subspectra. To improve the agreement with ran-
dom matrix predictions, the authors calculated the spectrum
numerically and used the results of the calculation to relabel
the misidentified eigenvalues.

In the present work a billiard with threefold symmetry is
studied, which has the additional feature to allow a change of
symmetry fromCs, to C5 by turning an insert placed in the
center of the billiard, thus allowing to study the transition
from GOE to GUE behavior of thee= =1 subspectra. In
view of th_e problems_ to separate the respgcuv_e S!Jbsp_ectra FIG. 1. Sketch of the microwave billiard used in the experiment
satisfactorily, we refrained from any attempt in this direction. angle $=0°. The positions of the antennas are marked by
Instead we concentrated on the spectral statistics for the Sipysses.
perimposed spectrum and compared the results with numeri-

cal and analytic calculations based on random matrix theory, .ias of marginally stable orbits such as bouncing balls.

(RMT). . . . __This was checked by means of a Poincplet of the classi-
A formula for the number variance is derived assuming.o| motion of a particle in the billiard.

that the degeneracy is lifted by a random off-diagonal matrix
element between the two states of the doublets. It describes, ¢ quasi-two-dimensional for frequencies belowy,,

fairly well the long-range properties of the spectra complete L c/oh=15 GHz. Microwave reflection spectra were taken

_by means qf. level dynamics_. The spectral sho_rt-range beha‘6\7ith a Wiltron 360B vector network analyzer in the fre-
ior is sensitive to the details of the completion procedure

. o ok i guency range 0.5—7 GHz with a resolution of 0.5 MHz. In
while the long-range behavior is not. This is why the differ- the studied spectral range one expects to find altogether 400

%"lgenvalues for each angte This number is obtained from
the Weyl formula with area and circumference term

The height of the billiard wah=10 mm, i.e., the system

tected very reliably in the long-range regime.
If we consider the individual spectra there is a loss of
roughly 20% of the levels. The number variance of the un-
. : — A S
completed spectra were compared with numerical RMT n(k)=-—k2— —k. )
simulations. Several ways to simulate the loss of levels have 4 A
been applied, and in all cases the two symmetries remained
distinguishable at a loss rate of 20%. n(k) is the mean integrated density of states, wheére

In the following section the experimental setup and the~0.258nf and S~3.59 m are the area and circumference
details of the data analysis are presented. Further the gradug the billiard, andk=2#v/c is the wave number. The cur-
transition from theCs, to theC; symmetry will be observed vature of the billiard yields a correction term of the order of
in the number variance of the experimental spectra. In Sec.. The number of states identified for a fixed angle falls
Il the results for the completed spectra will be comparedapproximately 20% short of the Weyl estimate. It is possible
with calculations taking into account the break of 888  to recover all missing eigenvalues by studying the dynamics
symmetry. Finally, in Sec. IV we will discuss the results for of the spectra as a function of the angle. This is demonstrated
individual spectra with missing levels; these will be comple-in Fig. 2 where the positions of the missing resonances are
mented with numerical RMT simulations. marked by diamond-shaped symbols.

We begin with a presentation of the number variance in
dependence of the insert angle, both for the completed and
uncompleted spectra. In both cases the spectra were unfolded

The main features of the experimental technique havéo a constant mean density of states using a second-order
been presented elsewhé¢dd)]. Therefore, we concentrate on polynomial fit to the experimental integrated density of
the aspects of relevance in the present context. Figure dtates. The number varian&?(L) has been obtained by
shows a sketch of the billiard used in the experiment. Thanoving the interval of lengtih. through each spectrum on a
interior insert can be rotated versus the outer part thus allowfine grid to not loose any information. Consequently, the
ing a spectral level dynamics measurement in dependence sfnoothness oE?(L) does not reflect its statistical quality,
the rotation anglep. To avoid a break of symmetry due to since the intervals are not statistically independent.
the presence of the antenna, three antennas were placed atFigure 3 shows the number variangé(L) for different
symmetry equivalent positions, two of them being termi-angles ¢, where the results forp=0°,1°,$=2°,3°,¢
nated by 50) loads. Spectra were taken for angles frgm =4°,5° and ¢=6°,7° have been averaged. We see a
=0°, corresponding to the geometry with;, symmetry gradual transition from th€,, to the C; case with increas-
shown in the figure, tap=20° in steps of 1°. All bound- ing ¢. The line with long dashes shows an average ater
aries, both of the insert and the outer part, were curved, aneé8°, . ..,19°, corresponding to th€; case. The GOE-
the corners of the outer boundary were removed to avoidUE transition is clearly seen, both in the completed and the

II. EXPERIMENTAL TECHNIQUE
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with a doubly degenerate GUE spectrum should be observed.
The short-range behavior is dominated by doublet splitting,
which we have no reliable experimental handle on. We there-
fore concentrate on the long-range behavior. In particular we
consider the long-range part of the two-point correlation
function. The number variance is ideally suited for this pur-
pose because of the clear signature it shows for the differ-
ence between the GOE and the GUE case.
For the superposition dfl strictly noninteracting, equally

weighted subspectra the number variance can be written as
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FIG. 2. Part of the spectral level dynamics for the billiard with N
threefold symmetry with the orientation angfeof the central in- |, the case of a threefold symmetry, the three subspectra are

sert as the level dynamics parameter. Angle 0° corresponds {0 oy independent; instead two of them are degenerate and thus

Cs, symmetry. Only the_ resonances marked by Cross- shaped symge covariance of this doublet spectrum leads to a factor 2 in
bols were really found in the experiment. At the positions markedthe number variance of their superposition
by diamond-shaped symbols missing resonances were supple- perp ’

mented.

. (3

1 1
Etzotal(l—)zzi(gL +42§(§L
uncompleted spectra. In the following we will only discuss
the two extreme cases, where for tBig, case the results for
¢=0°,1° will be averaged and for th€; case the ones for

$=8°,...,19°.

HereEi is the number variance of the singlet spectrum being
a GOE spectrum in both cases, wher&gsis the number
variance of the doublet spectrum that may be a GOE or a
GUE spectrum, depending on the symmetry of the system.

In the analysis of the completed spectra, the first 70 ei-
genvalues of each spectrum have been omitted to avoid non-

We recall that forp=0° we expect a superposition of one generic features in the statistics. The results for the number
GOE spectrum and another doubly degenerate GOE spe¥ariance of the experimental spectra have been averaged
trum for the ideal system, whereas for anglesufficiently ~ over the rotation angleg=0,1° in the C3, case and¢

Ill. RESULTS FOR THE COMPLETED SPECTRA AND
THE DOUBLET SPLITTING

different from zero a superposition of one GOE spectrum=3, . . .,19° in theC; case. This implies that the statistical
fluctuations of the number variance are much larger in the
2.5 T . . T . ] former case.

- Figure 4 shows experimental data with solid lines for the
zop Cs, (a) and theC; (b) case, respectively, while the dotted
sk lines give the ideal result of Eq3). It is not surprising that

R the agreement is poor, since we already noticed in the level

T ok dynamics that the doublet spectrum was rather strongly split,

E 3 indicating a sizeable break of the; symmetry of the bil-
osk £ 3 liard. On the other hand, we clearly see that the two number

. ] variances differ, and that the effect is quite large. This was
00+ 4+ -+ the motivation for further theoretical considerations of the

L b ] symmetry breaking. A detailed discussion of this issue fol-
20F . lows in the Appendix, where an expression for the corre-

b ] sponding number variance is derived. Here only the main

~ 15F TresrEEER points shall be outlined.

o f ,:A:-’—-’""' ] The case of theC; symmetry is the more delicate one.
op ;{-:" B The basis functions spanning the irreducible subspaces are
05:_ ] complex, but due to the degeneracy we can always choose
I ] real functions. The Appendix gives formal explanations, but
0.0k . . . . . ] here it may suffice to say that the actual measurements are on

real fields and therefore it is clear that the smallest perturba-
tion that does lift the degeneracy must cause real linear com-
FIG. 3. Number varianc&2(L) for different anglese for the ~ binations. Therefore it is not surprising that we have to use
completed(a) and the uncompleteto) spectra. The results fop degenerate perturbation theory for a real symmetric matrix.
=0°,1° (upper solid ling, p=2°,3° (dashed] ¢=4°,5° (dash- Furthermore it is quite clear that the perturbation matrix el-
dotted, ¢=6°,7° (dotted, were averaged. The lower solid line ements should be Gaussian distributed. While the mechanical
shows an average over=8°, ...,19°. imperfections causing the breakdown of the symmetry are

o
-
N
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v
o
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2.0 — : FIG. 5. Nearest-neighbor distribution for the cas&€gfsymme-
~ ] try. The black line shows the results for the experimental data with
& OF g 20% loss, the gray line shows the numerical simulations.
1.0F 3
05: E standing of the GOE-GUE transition observed in the experi-
T ] ment. The completion of spectra is definitely a legitimate
0.0 L ' ' L ' . approach, but in general only isolated spectra for fixed sys-

tems are available. Therefore we felt the need to check the
. robustness of the signatures of the transition by considering
FIG. 4. Number varianc®?(L) of the completed spectra for the what we can learn from incomplete spectra with as many as
mirror-symmetric(a) and the non-mirror-symmetrith) case. The 209 of the levels missing.
experimental resultésolid line) are compared with the theoretical Numerical simulations have been performed as follows.
prediction for the ideal systerdotted ling, and with an analytical /e produced ensembles of 1000 spectra of dimension 500 to
result, where the doublet splitting was taken into accaiaish- create the GOE or the GUE doublets for thg, andCs case
dotted ling. respectively. Then we lifted the degeneracy randomly using a

the same for all functions, the unperturbed eigenfunction§>aussian distribution with a width of about 12.5% of the
involved are those of a chaotic system and thus in good@verage level distance of a single spectrum. These spectra
approximation random functions that should yield Gaussiafhave been superposed with an independent GOE spectrum of
distributed matrix elements. Based on these simple considethe same strength.

ations it is clear that the level splitting is Gaussian distrib-  In the next step we tried to simulate the experimental loss.
uted, too, and linear in the perturbation. In the Appendix weThere are two sources of missing levels. First, close pairs can
obtain an expression for the effect of such a level splitting omo longer be resolved if their separation is smaller than the
the long-range part of the number variance, and we alstinewidth. Second, a level will be missed if incidentally a
show that effects of three level terms are small and thugiode line of the associated wave function will be just at the
effects of the symmetry breaking on the number variance foposition of the antenna. This mechanism leads to a loss that
larger distances are of second order in the perturbation. s uniformly distributed along the energy axis.

Th_ls result is of central importance since it e_xpla|_ns why 5o we skipped randomly 7% of the eigenvalues to simu-
the difference in the number variances persists in spite of thgyie the global loss due to the position of the antenna. Then
fairly large doublet splitting. A parameteY=0.125 for the e compared the distance between two adjacent levels with a
width of the distribution of the perturbation matrix element ;o ssjan distributed random number whose width is chosen
and thus for the doublet splittirigee Eq(AS)], is consistent g0y that around 13% of the doublets are destroyed. From

with the splitting found in the experiment. It corresponds to 3these spectra only 30% of the levels at the center of each

mean level splitting of about 0.85 in units of the mean levelg,eqiym are taken into account for the further analysis in
spacing. If we now use the results of the Appendix for the

) h for th h order to avoid edge effects. The ratio of uncorrelated and
number variance, EdA10), bot or the GOE a_nd the GUE ¢4 rejated loss has been chosen to get a fair correspondence
case, we find good agreement with the experimental result

Petween experiment and theory f at small distances and

as can bg ir_1ferred from the dash-dotted Iin_e !n Fig. 4. Th?s consistent with values found in previous woflge, e.g.,
small deviations are consistent with the statistical uncertaing o [11))

ties seen in skewness and excésst shown. We therefore
have a clear understanding of the role played by the splitting, ,
of the degeneracy and why it does not affect the differenc
between the two cases even if the symmetries are only a|
proximate.

The numerical as well as the experimental results for the
arest neighbor distribution for the caseCafsymmetry are
resented in Fig. 5. A good qualitative agreement between
he two curves is found, although the first bins are underes-
timated in the numerical data resulting in an overshoot of its
maximum. In Fig. 6 the experimental results for the number
variance of both symmetries are compared with the numer-
Completing the spectra by means of spectral level dynamics. In both cases we get a rough agreement up=t3. For
ics we were able to come to a quantitative theoretical underarger distances the slope of the numerical curve is by far too

IV. MISSING LEVELS AND INDIVIDUAL SPECTRA
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: ] APPENDIX: NUMBER VARIANCE FOR PERTURBED C;
osf A 3 SYMMETRY

ool v oo In this Appendix we present a detailed treatment of the
o 1 2 f 4 5 6 effect of symmetry breaking. We first need to specify a rea-
sonable RMT model for this system. To this end let us con-
FIG. 6. Number varianc&?(L) of the experimental data with sider an unperturbed Hamiltonian matkbg representing the
20% loss(solid line: C, , dash-dotted lineC5 case in comparison  billiard with perfectC; symmetry. The Hilbert space can be
with the numerical simulation&ashed lineCs,, dotted line:C, separated into three irreducible parts, one invariant under the
case. group action, the other two spanned by clockwise and coun-
terclockwise traveling waves. Because of TRI the eigenfunc-
large which indicates that we have somehow destroyed longions in the latter two subspaces have pairwise degenerate
range correlations still present in the experimental data. Ogigenvalues, i.e., they display a Kramers degeneracy. If we
the other hand, the reliability of the experimental data forwish to display TRI rather than th€; invariance we can
largeL is questionable because of the missing levels. Therealternatively use a real basis for the doublet space. Any per-
fore it seems unreasonable to fit parameters such as the p&lirbation due to imperfections of the billiard can only break
centages of the two sources of level missing. In any casehe C, symmetry but not TRI. As we wish to introduce an
both the experimental results as well as the numerical calclRMT model for the perturbation that conserves TR, it is
lations permit a clear distinction between the two symmetryobvious that this can be implemented by a real symmetric
cases. matrix in the real basis.
From this picture the effect of the perturbation is imme-
V. CONCLUSIONS diately clear: Since we have degenerate eigenvalues, we

must look at these separately. Then we may ask what hap-

_We have presented experimental results for a quasi-Woens if there is a third eigenvalue in the vicinity. We there-
dimensional microwave cavity with a movable insert permit-¢y o consider the matrix

ting to change the discrete symmetry of the cavity frog)

to C3. According to theory, this change should modify the 0 Vi V,
spectral statistics in the ideal case from a superposition of A=l VvV, 0 V Al
two GOE spectra, one of them degenerate, to a superposition B s (A1)
of a GOE spectrum with a degenerate GUE spectrum. We Vo, Vi 1

find that the level splitting due to imperfections in tg . .
symmetry amounts to about 0.85 of the mean level spacin ,here we have scaled and Sh'ﬂ?d the_ two.degenerate eigen-
alues to zero, and the perturbing third eigenvalue to one.

and we face up to 20% loss of levels in an isolated spectru e ol | bev the relati
From spectral level dynamics by rotating the cavity’s insert! N€ €igenvalues; obey the relations

we can recover the entire spectra, with some errors in the Aot Aot a1
. . . 1 2 37 4
short-range behavior of correlation functions. Nevertheless,
the Iong-range part of the number variance still clearly dis- )\§+)\§+)\§=1+2(V§+V§+V§), (A2)
plays the difference between the two cases. From a theoret-
ical analysis of the symmetry breaking in terms of degener- Aok g= —V§+2V1V2V3.

ate perturbation theory, this behavior becomes

comprehensible, since the level splitting is linear in the perqpege equations are satisfied to second order irvtHzy
turbation while long-range effects are quadratic.

Even more importantly, we have shown that the spectral N=V4,
statistics of spectra with large loss of levels can still provide
usable information. By postulating two types of losses, a No=—Vq, (A3)
statistical one due to the fact that the antenna may be close to
a node of the wave function and a systematic one due to N3=1.
overlap of close-lying levels, we can explain the experimen-
tal results qualitatively. The shift in the two degenerate eigenvalues, being linear in

the off-diagonal elemen¥,, thus dominates all other pertur-
bations as long as thé; are small with respect to the third
eigenvalue. If on the other hand the third eigenvalue is so
The experiments were supported by the Deutsche Forslose to the degenerate doublet thatVheare of the order of
chungsgemeinschaft. Travel support was obtained fronone, the situation becomes more complex and Cardan’s for-
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mula must be used. However, the splitting will still be linear k(t):1+e—8w2At2_ze—4w2At2+2k0(2t)6—4772At2_
in the V;, so that the qualitative behavior should not be (A7)
greatly affected. The probability for one doublet to come
close to another one is very small, since they experienc&he number varianc&?(L) can be expressed 4see, e.g.,
GUE level repulsion. Ref.[12])

We now turn to the calculation of the spectral form factor,
and of the number variance for a weakly split GUE doublet 2 (= sinwLt)?
spectrum. Let us take the, to be an arbitrary reference EZ(L)I—ZJ dtk(t)( r )
spectrum with mean level spacing equal to one. The split ™0

doublet spectrum is generated by Thus, from Eq(A8) we get theSﬁ(L) for the doublet part of

(A8)

Ex .= 26+ oay, (A4)  the spectrum by inserting the GUE form factor
where o runs over=1 and the factor 2 retains the mean ko(t)=1t| ([t|<1)
level spacing of one. The, are taken to be independent
Gaussian random variables distributed according to =1 (t|>1) (A9)
1 ) into Eq. (A7). From this one finally obtains for the number

p(a)= mexp{—a 1(24)]. (A5)  variance of the superimposed spectrum
We are now going to compute the form factor 2 1

going P Efmal(L)zzg(gL +32 §L), (A10)

N
1 A
k=0g 2 2 "G Bt (ap)

2N | L where EE(L) is the number variance of the GOE singlet

spectrum.
from the corresponding quantilg(t) for the €, . Separating The C5, case yields a similar result if we substitute the
the right-hand side into a part fér=1 and another fok+#| GOE form factor rather than the GUE form factor fqy in
and averaging over tha, yields Eq. (A7).
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